Sida 2 av 2

Re: Hur nära döden?

Postat: 30 augusti 2009, 23:33:14
av 4kTRB
Nej jag har en kylare och den blir 92 grader varm med 26W total förlusteffekt från
båda transistorerna. Och då bör kylaren ha Rth = 2.55 K/W om nu alla övriga
termiska resistanser är riktiga. Det är linjära förhållanden som gäller så
2 st. 5.1 K/W eller 1 st. 2.55 K/W kylare. En större kylare har ju lägre K/W.

Re: Hur nära döden?

Postat: 31 augusti 2009, 00:04:10
av 4kTRB
Jag har räknat fel på kapseltemperaturen.

Två kapslar har större kylyta/kylelement alltså lägre Rth
Rth j-c = (150-92)/26.34 - 0.4 -0.5 = 1.30 grad K/W

För en kapsel gäller i analogi med hälften så stor kylare:

Rth j-c = 2 x 1.30 grad K/W

Då får jag kapseltempen som (150-Tc)/2.6 = 13.17 => Tc = 116 grader

...samma kapseltemp

=)

Re: Hur nära döden?

Postat: 31 augusti 2009, 13:44:35
av JimmyAndersson
4kTRB:
Jag slog ihop några långa rader med inlägg från dig. Det var lite jobbigt. :wink:

Ett litet tips:
Använd "Ändra"-knappen om du vill lägga till något i ett inlägg som skrevs några minuter tidigare.
Rör det sig om mer än en timma så är det ok med ett nytt inlägg.

:)

Re: Hur nära döden?

Postat: 31 augusti 2009, 19:40:31
av 4kTRB
En sak till måste jag kolla,
eftersom effektutvecklingen i lasten (RL och RE) följer ett kvadratiskt samband
så bör jag kolla så att en lägre ström inte ger högre effektutveckling i trissan
Om jag sätter strömmens toppvärde = A och de båda resistanserna RE + RL = R (1.1ohm)
och spänningskällan +15V = E
så blir effekten i en transistor P(A) = E(A/pi) - R(A/2)^2 = E(A/pi) - (RA^2)/4
derivera
dP(A)/dA = E/pi - 2RA/4 = E/pi - RA/2
sätt derivatan lika med noll
A = 2E/pi/R
A = 2x15/pi/1.1 = 8.68 A
vilket ger ett rms-värde på 6.14A och maxförlusten = 20.72W i en trissa
både högre och lägre ström ger lägre förlust i trissan.

2.43A är vad som max går att styra ut med sinus utan att
signalen klipper i den koppling jag valt
så då blir det värsta fallet.