Postat: 15 juli 2007, 23:43:47
Läs SMPS länken igen, speciellt det här:
Radio frequency interference The current in a SMPS is switched on and off sharply, and contains high frequency spectral components. Long wires between the components may reduce the high frequency filter efficiency provided by the capacitors at the inlet and outlet. This high-frequency current can generate undesirable electromagnetic interference. EMI filters and RF shielding are needed to reduce the disruptive interference. Linear PSUs generally do not produce interference, and are used to supply power where radio interference must not occur.
Electronic noise at the output terminals Inexpensive linear PSUs with poor regulation may experience a small AC voltage "riding on" the DC output at twice mains frequency (100/120 Hz). These "ripples" are usually on the order of millivolts, and can be suppressed with larger filter capacitors or better voltage regulators. This small AC voltage can cause problems or interference in some circuits; for example, analog security cameras powered by switching power supplies may have unexpected brightness ripples or other banded distortions in the video they produce. Quality linear PSUs will suppress ripples much better. SMPS usually do not exhibit ripple at the power-line frequency, but do have generally noisier outputs than linear PSUs. The noise is usually correlated with the SMPS switching frequency.
Acoustic noise Linear PSUs typically give off a faint, low frequency hum at mains frequency, but this is seldom audible (vibration of windings in the transformer is responsible). SMPSs, with their much higher operating frequencies, are not usually audible to humans (unless they have a fan, in the case of most computer SMPSs). A malfunctioning SMPS may generate high-pitched sounds, since they do in fact generate acoustic noise at the oscillator frequency.
Radio frequency interference The current in a SMPS is switched on and off sharply, and contains high frequency spectral components. Long wires between the components may reduce the high frequency filter efficiency provided by the capacitors at the inlet and outlet. This high-frequency current can generate undesirable electromagnetic interference. EMI filters and RF shielding are needed to reduce the disruptive interference. Linear PSUs generally do not produce interference, and are used to supply power where radio interference must not occur.
Electronic noise at the output terminals Inexpensive linear PSUs with poor regulation may experience a small AC voltage "riding on" the DC output at twice mains frequency (100/120 Hz). These "ripples" are usually on the order of millivolts, and can be suppressed with larger filter capacitors or better voltage regulators. This small AC voltage can cause problems or interference in some circuits; for example, analog security cameras powered by switching power supplies may have unexpected brightness ripples or other banded distortions in the video they produce. Quality linear PSUs will suppress ripples much better. SMPS usually do not exhibit ripple at the power-line frequency, but do have generally noisier outputs than linear PSUs. The noise is usually correlated with the SMPS switching frequency.
Acoustic noise Linear PSUs typically give off a faint, low frequency hum at mains frequency, but this is seldom audible (vibration of windings in the transformer is responsible). SMPSs, with their much higher operating frequencies, are not usually audible to humans (unless they have a fan, in the case of most computer SMPSs). A malfunctioning SMPS may generate high-pitched sounds, since they do in fact generate acoustic noise at the oscillator frequency.